leetcode Counting Bits

leetcode Counting Bits

Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.

Example:
For num = 5 you should return [0,1,1,2,1,2].

Follow up:

  • It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
  • Space complexity should be O(n).
  • Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.

Continue reading


leetcode House Robber III

leetcode House Robber III

The thief has found himself a new place for his thievery again. There is only one entrance to this area, called the “root.” Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that “all houses in this place forms a binary tree”. It will automatically contact the police if two directly-linked houses were broken into on the same night.

Determine the maximum amount of money the thief can rob tonight without alerting the police.

Example 1:

Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.

Example 2:

Maximum amount of money the thief can rob = 4 + 5 = 9.

Continue reading


leetcode Self Crossing

leetcode Self Crossing

You are given an array x of n positive numbers. You start at point (0,0) and moves x[0] metres to the north, then x[1] metres to the west,x[2] metres to the south, x[3] metres to the east and so on. In other words, after each move your direction changes counter-clockwise.

Write a one-pass algorithm with O(1) extra space to determine, if your path crosses itself, or not.

Example 1:
Given x = [2, 1, 1, 2]
Return true (self crossing)
Example 2:
Given x = [1, 2, 3, 4]
Return false (not self crossing)
Example 3:
Given x = [1, 1, 1, 1]
Return true (self crossing)

Continue reading


leetcode Increasing Triplet Subsequence

leetcode Increasing Triplet Subsequence

Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.

Formally the function should:

Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < kn-1 else return false.Your algorithm should run in O(n) time complexity and O(1) space complexity.

Examples:
Given [1, 2, 3, 4, 5],
return true.

Given [5, 4, 3, 2, 1],
return false.

Continue reading


leetcode Patching Array

leetcode Patching Array

Given a sorted positive integer array nums and an integer n, add/patch elements to the array such that any number in range [1, n] inclusive can be formed by the sum of some elements in the array. Return the minimum number of patches required.

Example 1:
nums = [1, 3], n = 6
Return 1.

Combinations of nums are [1], [3], [1,3], which form possible sums of: 1, 3, 4.
Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1,3], [2,3], [1,2,3].
Possible sums are 1, 2, 3, 4, 5, 6, which now covers the range [1, 6].
So we only need 1 patch.

Continue reading


leetcode Odd Even Linked List

leetcode Odd Even Linked List

Given a singly linked list, group all odd nodes together followed by the even nodes. Please note here we are talking about the node number and not the value in the nodes.

You should try to do it in place. The program should run in O(1) space complexity and O(nodes) time complexity.

Example:
Given 1->2->3->4->5->NULL,
return 1->3->5->2->4->NULL.

Note:
The relative order inside both the even and odd groups should remain as it was in the input.
The first node is considered odd, the second node even and so on …

Continue reading