0%

leetcode Shuffle an Array

Shuffle a set of numbers without duplicates.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
// Init an array with set 1, 2, and 3.
int[] nums = {1,2,3};
Solution solution = new Solution(nums);

// Shuffle the array [1,2,3] and return its result. Any permutation of [1,2,3] must equally likely to be returned.
solution.shuffle();

// Resets the array back to its original configuration [1,2,3].
solution.reset();

// Returns the random shuffling of array [1,2,3].
solution.shuffle();


阅读全文 »

leetcode Ransom Note

Given
> an 
> arbitrary
> ransom
> note
> string 
> and 
> another 
> string 
> containing 
> letters from
> all 
> the 
> magazines,
> write 
> a 
> function 
> that 
> will 
> return 
> true 
> if 
> the 
> ransom 
> note 
> can 
> be 
> constructed 
> from 
> the 
> magazines ; 
> otherwise, 
> it 
> will 
> return 
> false.

Each 
> letter
> in
> the
> magazine 
> string 
> can
> only 
> be
> used 
> once
> in
> your 
> ransom
> note.

Note: You may assume that both strings contain only lowercase letters.

1
2
3
canConstruct("a", "b") -> false
canConstruct("aa", "ab") -> false
canConstruct("aa", "aab") -> true
阅读全文 »

leetcode Insert Delete GetRandom O(1) - Duplicates allowed

Design a data structure that supports all following operations in average O(1) time.

Note: Duplicate elements are allowed.

  1. insert(val): Inserts an item val to the collection.
  2. remove(val): Removes an item val from the collection if present.
  3. getRandom: Returns a random element from current collection of elements. The probability of each element being returned is linearly related to the number of same value the collection contains.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// Init an empty collection.
RandomizedCollection collection = new RandomizedCollection();

// Inserts 1 to the collection. Returns true as the collection did not contain 1.
collection.insert(1);

// Inserts another 1 to the collection. Returns false as the collection contained 1. Collection now contains [1,1].
collection.insert(1);

// Inserts 2 to the collection, returns true. Collection now contains [1,1,2].
collection.insert(2);

// getRandom should return 1 with the probability 2/3, and returns 2 with the probability 1/3.
collection.getRandom();

// Removes 1 from the collection, returns true. Collection now contains [1,2].
collection.remove(1);

// getRandom should return 1 and 2 both equally likely.
collection.getRandom();
阅读全文 »

leetcode Insert Delete GetRandom O(1)

Design a data structure that supports all following operations in O(1) time.

  1. insert(val): Inserts an item val to the set if not already present.
  2. remove(val): Removes an item val from the set if present.
  3. getRandom: Returns a random element from current set of elements. Each element must have the same probability of being returned.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// Init an empty set.
RandomizedSet randomSet = new RandomizedSet();

// Inserts 1 to the set. Returns true as 1 was inserted successfully.
randomSet.insert(1);

// Returns false as 2 does not exist in the set.
randomSet.remove(2);

// Inserts 2 to the set, returns true. Set now contains [1,2].
randomSet.insert(2);

// getRandom should return either 1 or 2 randomly.
randomSet.getRandom();

// Removes 1 from the set, returns true. Set now contains [2].
randomSet.remove(1);

// 2 was already in the set, so return false.
randomSet.insert(2);

// Since 1 is the only number in the set, getRandom always return 1.
randomSet.getRandom();
阅读全文 »

leetcode Kth Smallest Element in a Sorted Matrix

Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth smallest element in the matrix.

Note that it is the kth smallest element in the sorted order, not the kth distinct element.

Example:

1
2
3
4
5
6
7
8
matrix = [
[ 1, 5, 9],
[10, 11, 13],
[12, 13, 15]
],
k = 8,

return 13.

Note: You may assume k is always valid, 1 ≤ k ≤ n2.

阅读全文 »

leetcode Combination Sum IV

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.

Follow up: What if negative numbers are allowed in the given array? How does it change the problem? What limitation we need to add to the question to allow negative numbers?

阅读全文 »

leetcode Wiggle Subsequence

A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.

For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast,[1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.

Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.

Examples:

1
2
3
4
5
6
7
8
9
10
Input: [1,7,4,9,2,5]
Output: 6
The entire sequence is a wiggle sequence.

Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7
There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].

Input: [1,2,3,4,5,6,7,8,9]
Output: 2

Follow up: Can you do it in O(n) time?

阅读全文 »